Травма спинного мозга

Жизнь
после
травмы
спинного
мозга

Глава 2. Анатомо-физиологические особенности строения спинного мозга. Возможность передачи информации при повреждении спинного мозга

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ СПИННОГО МОЗГА

От спинномозгового нерва отходит ветвь к твердой оболочке спинного мозга - r. meningeus, которая содержит в своем составе и симпатические волокна. R. meningeus носит еще название возвратного нерва, так как она возвращается в позвоночный канал через межпозвоночное отверстие. Здесь нерв делится на две ветви: более крупную, идущую по передней стенке канала в восходящем направлении, и более мелкую, идущую в нисходящем направлении. Каждая из них соединяется как с ветвями соседних ветвей мозговой оболочки, так и с ветвями противоположной стороны. В результате этого образуется переднее сплетение мозговой оболочки, plexus meningeus anterior. Соответственно, при соединении на задней стенке позвоночного канала образуется заднее сплетение мозговой оболочки, plexus meningeus posterior. Эти сплетения посылают веточки к надкостнице, костям и оболочкам спинного мозга, венозным позвоночным сплетениям, а также к артериям позвоночного канала (15,16,18,22).

Твердая мозговая оболочка состоит из двух листков. Наружный листок плотно прилегает к костям черепа и позвоночника и является их надкостницей. Внутренний листок, или собственно твердая мозговая оболочка, представляет собой плотную фиброзную пластину. В позвоночном канале между двумя листками имеется рыхлая живая ткань, богатая венозной сетью (эпидуральное пространство) (15-18,22).

Паутинная оболочка выстилает внутреннюю поверхность твердой оболочки и соединена рядом тяжей с мягкой мозговой оболочкой. Мягкая мозговая оболочка плотно прилегает и срастается с поверхностью головного и спинного мозга. Пространство между паутинной и мягкой мозговой оболочками называется субарахноидальным, в нем циркулирует большая часть цереброспинальной жидкости. Цереброспинальная жидкость принимает участие в питании и обмене веществ нервной ткани и оттекает в венозные сплетения в эпидуральном пространстве (3,9,11,12,15-18,22). Эти анатомические особенности строения спинного мозга позволяют предположить возможность проведения информации при анатомическом повреждении, о чем будет сказано ниже.

НЕВРОЛОГИЧЕСКИЕ АСПЕКТЫ

При травме спинного мозга наблюдается локальное повреждение восходящих и нисходящих трактов - путей проведения информации с зон рецепции и в эти зоны. В неврологии эти патологические явления называются сегментарным уровнем поражения. Морфологически сегментарный уровень поражения характеризуется разрушением тел нейронов и их восходящих и нисходящих отростков, из которых слагаются проводящие пути спинного мозга (5,14,16).

А.В. Триумфов (16) отмечает, что каждая мышца и каждый дерматомер иннервируются двигательными и чувствительными волокнами не одного сегмента, а по меньшей мере еще 2-3 соседних сегментов. Поэтому при фактическом поражении 1-2 сегментов заметных расстройств обычно не наступает. При сегментарных чувствительных расстройствах зона анестезии всегда меньше, чем она должна была бы быть соответственно числу пораженных сегментов. Граничащие с очагом неповрежденные верхний и нижний сегменты уменьшают зону анестезии своими заходящими в нее волокнами (4,14.16,18).

Вышеизложенное относится к кожной зоне рецепции.

Рецепторные окончания нервов от соответствующих сегментов расположены не только в коже, но также в надкостнице и твердой мозговой оболочке. Эти зоны рецепции также перекрываются рецепторными окончаниями двух-трех ниже- и вышележащих сегментов спинного мозга. Информация, поступающая из этих зон при компрессии, может восприниматься как проецируемая боль, то есть как информация, поступающая из зоны соответствующего дерматомиотома (6,8,9,14,16,19,20). Аналогично проецируемой боли возникают любые другие проецируемые ощущения.

Учитывая вышеизложенные особенности строения оболочек спинного мозга и их иннервацию, очевидной становится возможность передачи импульсов в виде "перескока" через пораженный сегмент по сохранившимся передним и задним сплетениям и нервам твердой мозговой оболочки. В коре головного мозга сам "перескок" не анализируется. Ощущения при небольших поражениях сегментов воспринимаются так же, как при сохранившихся сегментах - это так называемые проецируемые ощущения (19). Интенсивность ощущений может быть искажена из-за деформации оболочек, особенно твердой мозговой оболочки. Этим объясняется наличие гиперпатий и гиперестезий при травмах позвоночного столба и спинного мозга (4,6,9,14,16,19).

РОЛЬ ЛИКВОРА В ПЕРЕДАЧЕ ИНФОРМАЦИИ

В результате травмы в спиномозговом канале развиваются многочисленные спаечные процессы, нарушающие циркуляцию спинномозговой жидкости (3,9,14,16,17). Для нормального функционирования спинномозговых проводящих путей необходима адекватная циркуляция спинномозговой жидкости, участвующей в обменных процессах при проведении импульсов по этим путям. Спинномозговая жидкость является электролитом и проводником немодулированных электрических сигналов от сегментов ниже места поражения к сегментам выше места поражения и наоборот (9,14,16,18). Такой вид проведения немодулированной информации аналогичен проведению сигналов в оборванном телефонном кабеле, который соединяет АТС и абонента. Если оборванные концы кабеля опустить в электролит, то передача электрических сигналов с одного конца кабеля на другой становится возможной, но эта информация будет искажена и немодулирована. То есть при достаточно сильном сигнале с АТС телефон может зазвонить, но речь по нему будет невнятной или вообще не будет слышна.

При восстановлении адекватной циркуляции спинномозговой жидкости также становится возможным проведение немодулированной информации к дистальным отделам спинного мозга и от них - к мышечным группам левой и правой половин тела и соответствующим нижним конечностям.
Поступление мощного импульса от центральных отделов нервной системы через ликвор к дистальному отделу спинного мозга способно вызвать сокращение крупных мышечных групп, сгибание в коленном, тазобедренном суставах. При этом отсутствует возможность произвольного управления мелкими мышечными группами: сгибание, разгибание пальцев.

Вышеизложенное подтверждается тем, что при восстановлении функции нижних конечностей при параплегии, обусловленной анатомическим разрывом спинного мозга, наблюдаются вначале синкинезии в нижних конечностях - содружественное сгибание в коленных и тазобедренных суставах. Через некоторое время появляется возможность волевого управления крупными мышечными группами левой и правой конечностей раздельно, что объясняется регрессом дистрофических изменений в нервной ткани ниже места повреждения и восстановлением проводимости в крупных нервных проводниках. Возможность последующей частичной модуляции сигналов обусловлена анатомо-физиологической генетически детерминированной асимметрией левой и правой половин тела, уменьшением диаметра нервных волокон в дистальных отделах и их разветвлениями (5,8,9,12,14,15,18-20).

РОЛЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ В ПРОВЕДЕНИИ ИМПУЛЬСОВ ПРИ ПОВРЕЖДЕНИИ СПИННОГО МОЗГА

Учитывая, что ганглии симпатической нервной системы образуют паравертебральную цепочку и в составе спинномозговых нервов входят в боковые рога спинного мозга, а также в состав менингеальных ветвей (3,6,8,14,15,18,20,22), становится понятной возможность проведения импульсов в обход пораженных сегментов по волокнам симпатической нервной системы. При применении способов интенсивной реабилитации в первые же дни наблюдается потепление тела и конечностей ниже перерыва спинного мозга, увеличение кровообращения, появление пульсации крупных артерий там, где ее раньше не было. Иногда отмечается гипергидроз, красный стойкий дермографизм и другие проявления, свидетельствующие о восстановлении функции вегетативной нервной системы ниже места повреждения спинного мозга. С этого момента становится возможным восстановление проводимости за счет компенсаторных механизмов в обход пораженного участка спинного мозга. Без появления признаков восстановления функций вегетативной нервной системы нельзя пытаться восстанавливать функции поперечнополосатой мускулатуры (5), так как это приведет к усилению дистрофических проявлений.

РОЛЬ МЫШЕЧНОЙ ТКАНИ В ПРОВЕДЕНИИ ИНФОРМАЦИИ ПРИ АНАТОМИЧЕСКИХ ПОВРЕЖДЕНИЯХ СПИННОГО МОЗГА

Поперечнополосатая мускулатура, имеющая две и более точки фиксации на разноименных костях скелета, иннервируется из различных сегментов спинного мозга (11,12,15,16,20,22). Повреждение какого-либо сегмента может снизить функцию поперечнополосатой мускулатуры (парез) вплоть до остановки мышечных сокращений (паралич) (7,9,14,16,21).

При спинальной травме после периода спинального шока восстанавливается спинальный автоматизм, что свидетельствует о сохранении сухожильных органов и мышечных веретен, рецепторов, реагирующих на изменение длины и напряжения мышц (1,3,6,14,16,19,20). Такой вид рецепции также может принимать участие в передаче импульсов при поражении сегментов. Элементарная рефлекторная дуга замыкается на уровне одного сегмента (2,6,10,14). Сухожильные органы различных мышц будут возбуждаться при сокращении мышц, имеющих те же точки фиксации, но получающих иннервацию от сохраненных сегментов (4,6,7,10,14,16,21). Восстановление функции верхних конечностей при травмах шейного отдела позвоночника с повреждением спинного мозга является примером такого вида передачи информации (14,16).

В сознании больного такое восстановление двигательной активности воспринимается одинаково как до травмы, так и после травмы, потому что точки фиксации мышц, получающих иннервацию из сегментов выше места повреждения, и мышц, получающих иннервацию из сегментов ниже места поражения, в зонах анализа в коре головного мозга практически совпадают (4,6,10-12,14,16). При достаточном натяжении сухожилий непарализованных мышц будут натягиваться сухожилия парализованных мышц (16,19,20,22). Это пассивное натяжение будет возбуждать сухожильные органы парализованных мышц. Сигналы с этих органов будут поступать по чувствительным проводникам в межпозвоночные отверстия ниже места поражения. Через нервы твердой мозговой оболочки и другие коллатеральные пути проведения импульсы будут "перескакивать" через пораженные сегменты, о чем упоминалось выше. Возможность пассивного возбуждения сухожильных рецепторов лежит в основе техники проприоцептивного проторения, о которой будет сказано далее.

ЭФАПТИЧЕСКАЯ ПЕРЕДАЧА

У больных с травмой спинного мозга возможна также эфаптическая передача возбуждения с аксонов нейронов ниже места поражения на аксоны нейронов выше места поражения (1,7,8,9,14,16,19). Эфаптическая передача возможна только на демиелинезированых нервных волокнах (19). При повреждениях спинного мозга наблюдается демиелинезация нервных волокон вследствие дистрофических явлений во всех органах и тканях, расположенных ниже места поражения (1,3,5,8,9). Импульсы, проходящие по одним нервным волокнам и сегментам ниже перерыва, индуцируют возбуждение мембран других нервных волокон, расположенных параллельно, к сегментам выше места поражения (19). Больной при этом испытывает аномальные ощущения - парестезии. Могут также развиваться невралгия, каузалгия, неврогенные боли, часто наблюдаемые у спинальных больных. Межаксональные помехи могут быть также следствием повышенной возбудимости аксонов. Эфаптическая передача, возникающая в первые дни интенсивной реабилитации, носит характер компенсаторной реакции и играет положительную роль при восстановлении функций (2,3,4,8,9,18,19).

***

Таким образом, в организме человека имеется возможность проведения импульсов, минуя пораженные сегменты, путем "перескока" по морфологическим субстратам с налагающимися рецепторными полями. (На использовании этого явления основан "принцип замены" в интенсивной реабилитации). В первую очередь это субстраты, целостность которых не нарушена:

1) кожа,
2) твердая мозговая оболочка,
3) вегетативная нервная система,
4) рецепторный аппарат мышц.
Также возможно компенсаторное проведение импульсов:
а) в сохранившихся волокнах на уровне поражения сегментов;
б) по сохранившейся паутинной и мягкой мозговой оболочке;
в) отдельно следует отметить возможность проведения импульсов по спинномозговой жидкости, являющейся электролитом;
г) проведение импульсов посредством эфаптической передачи.

ЛИТЕРАТУРА

1. Аничков С.В., Заводская И.С. и др. Нейрогенные дистрофии и их фармакотерапия. - Л.: Медицина, 1969.
2. Анохин П.К. Биология и нейрофизиология условного рефлекса. - М.: Медицина,1968.
3. Бергер Э.Н. Нейрогуморальные механизмы нарушения тканевой трофики. - Киев: Здоров'я, 1980.
4. Вальдман А.В., Игнатов Ю.Д. Центральные механизмы боли. - Л.: Наука, 1976.
5. Качесов В.А. Скоростная реабилитация пациентов с тетраплегией // Материалы Российского Национального конгресса "Человек и его здоровье. Травматология, ортопедия, протезирование, биомеханика, реабилитация инвалидов". - СПб: Тонэкс, 1998.
6. Костюк П.Г. Физиология центральной нервной системы. - Киев: Вища школа, 1977.
7. Макаров В.А., Тараканов О.П. Словарь-минимум физиологических терминов. - М.: Медицинская академия им. Сеченова, 1991.
8. Ноздрачев А.Д. Физиология вегетативной нервной системы. - Л.: Наука, 1983.
9. Окс С. Основы нейрофизиологии / Пер. с англ. - М.: Мир, 1969.
10. Павлов И.П. Полное собрание трудов. - М.-Л.: АН СССР, 1940-1949. Т.1-5.
11. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина,1985.
12. Ромер А., Парсонс Т. Анатомия позвоночных / Пер. с англ. - М.: Мир, 1992.
13. Саркисов Д.С., Пальцев М.А., Хитров М.К. Общая патология человека. - М.: Медицина, 1995.
14. Саченко Б. И. Энциклопедия детского невролога. - Минск: Беларуская энцыклапедыя, 1993.
15. Синельников Р.Д. Атлас анатомии человека / Пер. с англ. - М.: Медицина, 1983.
16. Триумфов А.В. Топическая диагностика заболеваний нервной системы. - М.: МЕДпресс, 1997.
17. Трошин В.Д. Эпидуральное введение лекарственных веществ в неврологической практике. - Горький,1974.
18. Шаде Дж., Форд Д. Основы неврологии. - М.: Мир, 1976.
19. Шмидт Р., Тевс Г. Физиология человека / Пер. с англ. - М.: Мир, 1996.
20. Шмидт-Ниельсон К. Физиология животных / Пер. с англ. - М.: Мир, 1982.
21. Юмашев Г.С., Фурман М.Е. Остеохондрозы позвоночника. - М.: Медицина, 1984.
22. Rohen J.W., Yokochi C. Human Anatomy. - Schattauer, Germany, 1994.

ОГЛАВЛЕНИЕ | ДАЛЬШЕ

Дата публикации (обновления): 04 августа 2019 г. 13:05

.



Жизнь после травмы
спинного мозга