Травма спинного мозга

Жизнь
после
травмы
спинного
мозга

Веб-данные в действии: сегментация клиентов

веб данныеВеб-данные позволяют использовать целый ряд совершенно новых аналитических приемов. Один из них заключается в сегментации клиентов на основании типичных для них закономерностей просмотра страниц. Такая сегментация обеспечит иной взгляд на клиентов, отличающийся от традиционных демографических или основанных на данных о продажах схем сегментации, а значит, уникальное понимание и действия.

Рассмотрим сегмент под названием «Мечтатели», который был выделен исключительно на основании просмотренных пользователями веб-страниц. Мечтатели часто помещают товар в корзину, а потом покидают ее. Они неоднократно добавляют один и тот же товар и отказываются от него. Это прежде всего касается таких дорогостоящих товаров, как телевизор или компьютер. Сегмент таких потребителей определить совсем нетрудно. Что же можно сделать после его выявления?

Один из вариантов действий заключается в изучении товаров, от которых отказываются клиенты. Возможно, клиент просматривает информацию о высокотехнологичном телевизоре, который стоит довольно дорого. В прошлом вы замечали, что этот клиент часто сначала нацеливается на дорогостоящий товар, а в итоге покупает менее дорогой.

Отправка электронного письма с предложением менее дорогих товаров, обладающих многими из интересующих их функций, может подтолкнуть таких потребителей к покупке телевизора.

Веб-данные требуют новых методов анализа

Для сегментации клиентов используются различные источники данных, например данные о продажах, демографические данные и результаты опросов. Теперь можно сегментировать клиентов и на основании просматриваемых ими страниц. Это дает представление о стилях покупательского поведения и процессах принятия решения, а также позволяет расширить список критериев сегментации.

Другой вариант носит оперативный характер. Статистика случаев, когда оставляют корзины, может быть скорректирована с учетом сведений о сегменте «Мечтатели». Если посетитель покидает корзину, организации часто рассматривают это как отказ. Однако изучение истории посещения страниц может указать на то, что 10 подобных случаев относятся к одному и тому же посетителю, который часто отказывается от товаров. В результате количество случаев оставления корзины может быть уменьшено и все факты отказа от данного товара могут быть расценены как один отказ. Это обеспечит более точные данные об отказах.

Когда вы скорректируете статистику с учетом всех таких клиентов, средний показатель отказов несколько улучшится по сравнению с первоначальным значением. Мало того что новые значения будут выглядеть лучше — они еще и будут более точно отражать реальное положение вещей.

Укрощение больших данных: как извлекать знания из массивов информации с помощью глубокой аналитики / Билл Фрэнкс. - М.: Манн, Иванов и Фербер, 2014. Опубликовано с разрешения издательства.

Похожие материалы

30.09.2018


Жизнь после травмы
спинного мозга